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Goals: Day 2

1 Understand shortcomings of standard parametric regression-based
techniques for the estimation of causal effect quantities.

2 Be introduced to the ideas behind machine learning approaches as
tools for confronting the curse of dimensionality.

3 Become familiar with the properties and basic implementation of
TMLE for effect estimation.



[Motivation]
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Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 
Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 
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Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.
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Electronic Health Databases

The increasing availability of electronic medical records offers a new
resource to public health researchers.

General usefulness of this type of data to answer targeted scientific
research questions is an open question.

Need novel statistical methods that have desirable statistical properties
while remaining computationally feasible.



Yesterday Super Learner: Kaiser Permanente Database

Nested case-control sample (n=27,012).

I Outcome: death.

I Covariates: 184 medical flags, gender & age.

Ensembling method outperformed all other algorithms.

Generally weak signal with R2 = 0.11.

Observed data structure on a subject can be represented as
O = (Y ,∆,∆X ), where X = (W ,Y ) is the full data structure, and ∆
denotes the indicator of inclusion in the second-stage sample.

How will this electronic database perform in comparison to a cohort study?

van der Laan & Rose (2011)



Yesterday Super Learner: Sonoma Cohort Study

Cohort study of n = 2, 066 residents of Sonoma, CA aged 54 and over.

I Outcome: death.

I Covariates: gender, age, self-rated health, leisure-time physical
activity, smoking status, cardiac event history, and chronic health
condition status.

I R2 = 0.201

Two-fold improvement with less than 10% of the subjects & less than 10%
the number of covariates.

What possible conclusions can we draw?

Rose (2013)



High Dimensional ‘Big Data’ Parametric Regression

I Often dozens, hundreds, or even
thousands of potential variables

I Impossible challenge to correctly
specify the parametric regression

I May have more unknown parameters
than observations

I True functional might be described by
a complex function not easily
approximated by main terms or
interaction terms
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Complications of Human Art in ‘Big Data’ Statistics

1 Fit several parametric models; select a favorite one

2 The parametric model is misspecified

3 The target parameter is interpreted as if the parametric model is
correct

4 The parametric model is often data-adaptively (or worse!) built, and
this part of the estimation procedure is not accounted for in the
variance



Estimation is a Science

1 Data: realizations of random variables with a probability distribution.

2 Statistical Model: actual knowledge about the shape of the
data-generating probability distribution.

3 Statistical Target Parameter: a feature/function of the
data-generating probability distribution.

4 Estimator: an a priori-specified algorithm, benchmarked by a
dissimilarity-measure (e.g., MSE) w.r.t. target parameter.



Roadmap for Effect Estimation

How does one translate the results from studies, how do we take the
information in the data, and draw effective conclusions?

I Define the Research Question
I Specify Data
I Specify Model
I Specify the Parameter of Interest

I Estimate the Target Parameter
I Inference

I Standard Errors / CIs
I Interpretation



Data

Random variable O, observed n times, could be defined in a simple case as
O = (W ,A,Y ) ∼ P0 if we are without common issues such as missingness
and censoring.

I W : vector of covariates

I A: exposure or treatment

I Y : outcome

This data structure makes for effective examples, but data structures
found in practice are frequently more complicated.



Data: Censoring & Missingness

Define O = (W ,A, T̃ ,∆) ∼ P0.

I T : time to event Y

I C : censoring time

I T̃ = min(T ,C ): represents the T or C that was observed first

I ∆ = I (T ≤ T̃ ) = I (C ≥ T ): indicator that T was observed at or
before C

Define O = (W ,A,∆,∆Y ) ∼ P0.

I ∆: Indicator of missingness



Model

General case: Observe n i.i.d. copies of random variable O with probability
distribution P0.

The data-generating distribution P0 is also known to be an element of a
statistical model M: P0 ∈M.

A statistical model M is the set of possible probability distributions for
P0; it is a collection of probability distributions.

If all we know is that we have n i.i.d. copies of O, this can be our
statistical model, which we call a nonparametric statistical model



Model

A statistical model can be augmented with additional (nontestable causal)
assumptions, allowing one to enrich the interpretation of Ψ(P0).

This does not change the statistical model.



Target Parameters
Define the parameter of the probability distribution P as function of
P : Ψ(P).

ψRD = ΨRD(P) = EW [E (Y | A = 1,W )− E (Y | A = 0,W )]

= E (Y1)− E (Y0)

= P(Y1 = 1)− P(Y0 = 1)

ψRR =
P(Y1 = 1)

P(Y0 = 1)

and

ψOR =
P(Y1 = 1)P(Y0 = 0)

P(Y1 = 0)P(Y0 = 1)
.

Y is the outcome, A the exposure, and W baseline covariates.



Effect Estimation vs. Prediction

Both effect and prediction research questions are inherently estimation
questions, but they are distinct in their goals.

Effect: Interested in estimating the effect of exposure on outcome
adjusted for covariates.

Prediction: Interested in generating a function to input covariates and
predict a value for the outcome.
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[(Causal) Effect Estimation]



Learning from Data

Just what type of studies are we conducting? The often quoted “ideal
experiment” is one that cannot be conducted in real life.

Subject 1

Subject 3

Subject 2

Subject 1

Subject 3

Subject 2 Subject 2

Subject 1

Subject 3

IDEAL EXPERIMENT REAL-WORLD STUDY

EXPOSED UNEXPOSED EXPOSED UNEXPOSED



Causal Model

Assume a structural causal model (SCM) (Pearl 2009), comprised of
endogenous variables X = (Xj : j) and exogenous variables U = (UXj

: j).

I Each Xj is a deterministic function of other endogenous variables and
an exogenous error Uj .

I The errors U are never observed.

I For each Xj we characterize its parents from among X with Pa(Xj).



Causal Model

Xj = fXj
(Pa(Xj),UXj

), j = 1 . . . , J,

The functional form of fXj
is often unspecified.

An SCM can be fully parametric, but we do not do that here as our
background knowledge does not support the assumptions involved.



Causal Model

We could specify the following SCM:

W = fW (UW ),

A = fA(W ,UA),

Y = fY (W ,A,UY ),

Recall that we assume for the full data:

1 for each Xj , Xj = fj(Pa(Xj),UXj
) depends on the other endogenous

variables only through the parents Pa(Xj),

2 the exogenous variables have a particular joint distribution PU ;
UA ⊥ UY |W .

In our simple study, X = (W ,A,Y ), and Pa(A) = W . We know this due
to the time ordering of the variables.



Causal Graph
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Figure: Causal graphs with various assumptions about the distribution of PU



A Note on Causal Assumptions

We could alternatively use the Neyman–Rubin Causal Model and assume

I randomization (A ⊥ Ya |W ) and

I stable unit treatment value assumption (SUTVA; no interference
between subjects and consistency assumption).



Positivity Assumption

We need that each possible exposure level occurs with some positive
probability within each stratum of W .

For our data structure (W ,A,Y ) we are assuming:

P0(A = 1 |W = w) > 0 and P0(A = 0 |W = w) > 0,

for each possible w .



Landscape: Effect Estimators

An estimator is an algorithm that can be applied to any empirical
distribution to provide a mapping from the empirical distribution to the
parameter space.

I Maximum-Likelihood-Based Estimators

I Estimating-Equation-Based Methods

The target parameters we discussed depend on P0 through the conditional
mean Q̄0(A,W ) = E0(Y | A,W ), and the marginal distribution QW ,0 of
W . Thus we can also write Ψ(Q0), where Q0 = (Q̄0,QW ,0).



Landscape: Effect Estimators

I Maximum-Likelihood-Based Estimators will be of the type

ψn = Ψ(Qn) =
1

n

n∑

i=1

{Q̄n(1,Wi )− Q̄n(0,Wi )},

where this estimate is obtained by plugging in Qn = (Q̄n,QW ,n) into
the mapping Ψ. Q̄n(A = a,Wi ) = En(Y | A = a,Wi ).

I Estimating-Equation-Based Methods An estimating function is a
function of the data O and the parameter of interest. If D(ψ)(O) is
an estimating function, then we can define a corresponding estimating
equation: 0 =

∑n
i=1 D(ψ)(Oi ), and solution ψn satisfying∑n

i=1 D(ψn)(Oi ) = 0.



Maximum-Likelihood-Based Methods

MLE using regression. Outcome regression estimated with parametric
methods and plugged into

ψn =
1

n

n∑

i=1

{Q̄n(1,Wi )− Q̄n(0,Wi )}.

STOP! When does this differ from traditional regression?
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Maximum-Likelihood-Based Methods

MLE using regression: Continuous outcome example.
True effect is -0.35
W1 = gender
W2 = medication use
A = high ozone exposure
Y = continuous measure of lung function

Model 1: E (Y | A) = α0 + α1A
Both Effects: -0.23

Model 2: E (Y | A,W ) = α0 + α1A + α2W1 + α3W2

Both Effects: -0.36

Model 3: E (Y | A,W ) = α0 + α1A + α2W1 + α3A ·W2

Regression Effect: -0.49
MLE Effect: -0.34



Maximum-Likelihood-Based Methods

MLE using regression: Binary outcomes.

P(Y = 1 | A,W ) =
1

1 + e−β0+β1A+β2W

EYa = P(Ya = 1) =
1

n

n∑

i=1

1

1 + e−β0+β1Ai+β2Wi

EY1/(1− EY1)

EY0/(1− EY0)
6= eβ1



Medical Schools in Fragile States: Delivery of Care

We found that fragile states lack the infrastructure to train sufficient
numbers of medical professionals to meet their population health needs.

Fragile states were 1.76 (95%CI 1.07-2.45) to 2.37 (95%CI 1.44-3.30)
times more likely to have < 2 medical schools than non-fragile states.

Mateen, McKenzie, Rose (2017)



Maximum-Likelihood-Based Methods

MLE using machine learning. Outcome regression estimated with
machine learning and plugged into

ψn =
1

n

n∑

i=1

{Q̄n(1,Wi )− Q̄n(0,Wi )}.



Machine Learning Estimation of Q̄(A,W ) = E (Y | A,W )



Machine Learning Big Picture

Machine learning aims to

I “smooth” over the data

I make fewer assumptions



Machine Learning Big Picture

Purely nonparametric model
with high dimensional data?

I p > n!

I data sparsity



Machine Learning Big Picture: Ensembling

I Ensembling methods allow implementation of multiple algorithms.

I Do not need to decide beforehand which single technique to use; can
use several by incorporating cross-validation.
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Machine Learning Big Picture: Ensembling

Build a collection of algorithms consisting of all weighted averages of the
algorithms.

One of these weighted averages might perform better than one of the
algorithms alone.

Data
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Image credit: Polley et al. (2011)



Noncommunicable Disease and Poverty

Studied relative risk of death from noncommunicable disease on three
poverty measures in Matlab, Bangladesh.

Implemented parametric and machine learning substitution estimators.

Mirelman et al. (2016)



Estimating Equation Methods

IPW. Estimate causal risk difference with

ψn =
1

n

n∑

i=1

{I (Ai = 1)− I (Ai = 0)} Yi

gn(Ai ,Wi )
.

This estimator is a solution of an IPW estimating equation that relies on
an estimate of the treatment mechanism, playing the role of a nuisance
parameter of the IPW estimating function.

A-IPW. One estimates Ψ(P0) with

ψn =
1

n

n∑

i=1

{I (Ai = 1)− I (Ai = 0)}
gn(Ai ,Wi )

(Yi − Q̄n(Ai ,Wi ))

+
1

n

n∑

i=1

{Q̄n(1,Wi )− Q̄n(0,Wi )}.



Targeted Learning in Nonparametric Models

I Parametric MLE not targeted for effect parameters

I Need a subsequent targeted bias-reduction step

Targeted Learning

I Avoid reliance on human art and unrealistic parametric models

I Define interesting parameters

I Target the parameter of interest

I Incorporate machine learning

I Statistical inference



TMLE for Causal Effects

TMLE

Produces a well-defined, unbiased, efficient substitution estimator of target
parameters of a data-generating distribution.

It is an iterative procedure that updates an initial (super learner) estimate
of the relevant part Q0 of the data generating distribution P0, possibly
using an estimate of a nuisance parameter g0.



TMLE for Causal Effects

Super Learner

Allows researchers to use multiple algorithms to outperform a single
algorithm in nonparametric statistical models.

Builds weighted combination of estimators where weights are optimized
based on loss-function specific cross-validation to guarantee best overall fit.

Targeted Maximum Likelihood Estimation

With an initial estimate of the outcome regression, the second stage of
TMLE updates this initial fit in a step targeted toward making an optimal
bias-variance tradeoff for the parameter of interest.



TMLE for Causal Effects

TMLE: Double Robust
I Removes asymptotic residual bias of initial estimator for the target

parameter, if it uses a consistent estimator of censoring/treatment
mechanism g0.

I If initial estimator was consistent for the target parameter, the
additional fitting of the data in the targeting step may remove finite
sample bias, and preserves consistency property of the initial
estimator.

TMLE: Efficiency

I If the initial estimator and the estimator of g0 are both consistent,
then it is also asymptotically efficient according to semi-parametric
statistical model efficiency theory.



TMLE for Causal Effects

TMLE: In Practice

Allows the incorporation of machine learning methods for the estimation of
both Q0 and g0 so that we do not make assumptions about the probability
distribution P0 we do not believe.

Thus, every effort is made to achieve minimal bias and the asymptotic
semi-parametric efficiency bound for the variance.



Targeted Learning in Nonparametric Models
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This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.
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Example: TMLE for the Risk Difference

Note that εn is obtained by performing a regression of Y on H∗n(A,W ),
where Q̄0

n(A,W ) is used as an offset, and extracting the coefficient for
H∗n(A,W ).

We then update Q̄0
n with logitQ̄1

n(A,W ) = logitQ̄0
n(A,W ) + ε1

nH
∗
n(A,W ).

This updating process converges in one step in this example, so that the
TMLE is given by Q∗n = Q1

n .



Example: Sonoma Cohort Study

Cohort study of n = 2, 066 residents of Sonoma, CA aged 54 and over.

I Outcome was death.

I Covariates were gender, age, self-rated health, leisure-time
physical activity, smoking status, cardiac event history, and chronic
health condition status.

I The data structure is O = (W ,A,Y ), where Y = I (T ≤ 5 years), T
is time to the event death

I No right censoring in this cohort.



Sonoma Study

Variable Description

Y Death occurring within 5 years of baseline
A LTPA score ≥ 22.5 METs at baseline‡

W1 Health self-rated as “excellent”
W2 Health self-rated as “fair”
W3 Health self-rated as “poor”
W4 Current smoker
W5 Former smoker
W6 Cardiac event prior to baseline
W7 Chronic health condition at baseline
W8 x ≤ 60 years old
W9 60 < x ≤ 70 years old
W10 80 < x ≤ 90 years old
W11 x > 90 years old
W12 Female

‡
LTPA is calculated from a detailed questionnaire where prior performed vigorous physical activities are assigned standardized

intensity values in metabolic equivalents (METs). The recommended level of energy expenditure for the elderly is 22.5 METs.



Sonoma Study
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Sonoma Study: Estimating Q̄0

At this stage we could plug our estimates Q̄0
n(1,Wi ) and Q̄0

n(0,Wi ) for
each subject into our substitution estimator of the risk difference:

ψMLE ,n = Ψ(Qn) =
1

n

n∑

i=1

{Q̄0
n(1,Wi )− Q̄0

n(0,Wi )}.



Sonoma Study: Estimating g0

Our targeting step required an estimate of the conditional distribution of
LTPA given covariates W .

This estimate of P0(A |W ) ≡ g0 is denoted gn.

We estimated predicted values using a super learner prediction function,
adding two more columns to our data matrix: gn(1 |Wi ) and gn(0 |Wi ).

(Step 3.)
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Sonoma Study: Determining a Submodel

The targeting step used the estimate gn in a clever covariate to define a
parametric working model coding fluctuations of the initial estimator. This
clever covariate H∗n(A,W ) is given by

H∗n(A,W ) ≡
(

I (A = 1)

gn(1 |W )
− I (A = 0)

gn(0 |W )

)
.



Sonoma Study: Determining a Submodel

Thus, for each subject with Ai = 1 in the observed data, we calculated the
clever covariate as H∗n(1,Wi ) = 1/gn(1 |Wi ).

Similarly, for each subject with Ai = 0 in the observed data, we calculated
the clever covariate as H∗n(0,Wi ) = −1/gn(0 |Wi ).

We combined these values to form a single column H∗n(Ai ,Wi ) in the data
matrix. We also added two columns H∗n(1,Wi ) and H∗n(0,Wi ). The values
for these columns were generated by setting a = 0 and a = 1.

(Step 4.)



Step 1

Step 2

Step 4

Step 5

Step 6

Step 3

W1 ... AW12

66 ... 10
Y
1

ID
1
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
73 ... 11 12066

Super learner 
function

Super learner 
exposure 

mechanism
function

W1 ...
66 ...

Y
1

ID
1
.
.
.

.

.

.

.

.

.

.

.

.
73 ... 12066

...
.
.
.

...

...
.
.
.

...

0.77
.
.
.

0.82

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

W1 ...
66 ...

ID
1
.
.
.

.

.

.

.

.

.
73 ...2066

0.77
.
.
.

0.82

...
.
.
.

...

0.32
.
.
.

0.45

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

W1 ...
66 ... 0.32

ID
1
.
.
.

.

.

.

.

.

.

.

.

.
73 ... 0.452066

...
.
.
.

...

...
.
.
.

...

-3.13
.
.
.

-2.22

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

W1 ...
66 ...

ID
1
.
.
.

.

.

.

.

.

.
73 ...2066

-3.13
.
.
.

-2.12

...
.
.
.

...

0.74
.
.
.

0.81

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009

Sherri Rose
50 University Hall #7360 · Berkeley, CA 94720 · sherri@berkeley.edu

Education Q̄0
n(Ai, Wi)

Q̄0
n(1, Wi)

Q̄0
n(0, Wi)

gn(0 | Wi)

gn(1 | Wi)

H∗
n(Ai, Wi)

H∗
n(1, Wi)

H∗
n(0, Wi)

Q̄1
n(1, Wi)

Q̄1
n(0, Wi)

ψn = 1
n

�n
i=1[Q̄

1
n(1, Wi) − Q̄1

n(0, Wi)]

PhD University of California, Berkeley
Biostatistics, May 2011

Causal Inference for Case-Control Study Designs

Developed novel targeted machine learning methods for causal inference
using non-parametric statistical models in biased sampling designs that
permit estimation of parameters not previously available.

Dr. Mark J. van der Laan, advisor

MA University of California, Berkeley
Biostatistics, May 2007

BS The George Washington University
Statistics, May 2005

Graduate
Awards

Mayhew and Helen Derryberry Fellowship (UC Berkeley) 2010 - 2011
U.S. Department of Health and Human Services Graduate Fellowship 2007 - 2010
Division of Biostatistics Departmental Fellowship (UC Berkeley) 2006 - 2010
Gertrude M. Cox Scholarship in Statistics (ASA) 2010
Statistics in Epidemiology Young Investigator Award (ASA) 2010
Division of Epidemiology Course Development Award (UC Berkeley) 2010
Russell M. Grossman Endowment Award (UC Berkeley) 2009



Sonoma Study: Updating Q̄0
n

We then ran a logistic regression of our outcome Y on the clever covariate
using as intercept the offset logitQ̄0

n(A,W ) to obtain the estimate εn,
where εn is the resulting coefficient in front of the clever covariate
H∗n(A,W ).

We next wanted to update the estimate Q̄0
n into a new estimate Q̄1

n of the
true regression function Q̄0:

logit Q̄1
n(A,W ) = logit Q̄0

n(A,W ) + εnH
∗
n(A,W ).

This parametric working model incorporated information from gn, through
H∗n(A,W ), into an updated regression.



Sonoma Study: Updating Q̄0
n

The TMLE of Q0 was given by Q∗n = (Q̄1
n ,Q

0
W ,n). With εn, we were ready

to update our prediction function at a = 1 and a = 0 according to the
logistic regression working model. We calculated

logit Q̄1
n(1,W ) = logitQ̄0

n(1,W ) + εnH
∗
n(1,W ),

for all subjects, and then

logit Q̄1
n(0,W ) = logitQ̄0

n(0,W ) + εnH
∗
n(0,W )

for all subjects and added a column for Q̄1
n(1,Wi ) and Q̄1

n(0,Wi ) to the
data matrix.

Updating Q̄0
n is also illustrated in Step 5.
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Sonoma Study: Targeted Substitution Estimator

Our formula from the first step becomes

ψTMLE ,n = Ψ(Q∗n) =
1

n

n∑

i=1

{Q̄1
n(1,Wi )− Q̄1

n(0,Wi )}.

This mapping was accomplished by evaluating Q̄1
n(1,Wi ) and Q̄1

n(0,Wi )
for each observation i , and plugging these values into the above equation.

Our estimate of the causal risk difference for the mortality study was
ψTMLE ,n = −0.055.
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Sonoma Study: Inference (Standard errors)

We then needed to calculate the influence curve for our estimator in order
to obtain standard errors:

ICn(Oi ) =

(
I (Ai = 1)

gn(1 |Wi )
− I (Ai = 0)

gn(0 |Wi )

)
(Y − Q̄1

n(Ai ,Wi ))

+ Q̄1
n(1,Wi )− Q̄1

n(0,Wi )− ψTMLE ,n,

where I is an indicator function: it equals 1 when the logical statement it
evaluates, e.g., Ai = 1, is true.



Sonoma Study: Inference (Standard errors)

Note that this influence curve is evaluated for each of the n observations
Oi .

With the influence curve of an estimator one can now proceed with
statistical inference as if the estimator minus its estimand equals the
empirical mean of the influence curve.



Sonoma Study: Inference (Standard errors)

Next, we calculated the sample mean of these estimated influence curve
values: ¯ICn = 1

n

∑n
i=1 ICn(oi ). For the TMLE we have ¯ICn = 0. Using this

mean, we calculated the sample variance of the estimated influence curve
values:

S2(ICn) = 1
n

∑n
i=1

(
ICn(oi )− ¯ICn

)2
.

Lastly, we used our sample variance to estimate the standard error of our
estimator:

σn =

√
S2(ICn)

n
.

This estimate of the standard error in the mortality study was σn = 0.012.



Sonoma Study: Inference (CIs)

ψTMLE ,n ± z0.975
σn√
n
,

where zα denotes the α-quantile of the standard normal density N(0, 1).



Sonoma Study: Inference (p-values)

A p-value for ψTMLE ,n can be calculated as:

2

[
1− Φ

(∣∣∣∣
ψTMLE ,n

σn/
√
n

∣∣∣∣
)]

,

where Φ denotes the standard normal cumulative distribution function.

The p-value was < 0.001 and the confidence interval was
[−0.078,−0.033].



Sonoma Study: Interpretation

The interpretation of our estimate ψTMLE ,n = −0.055, under causal
assumptions, is that meeting or exceeding recommended levels of LTPA
decreases 5-year mortality in an elderly population by 5.5 percentage
points.

This result was significant, with a p-value of < 0.001 and a confidence
interval of [−0.078,−0.033].



Example: TMLE with Missingness

SCM for a point treatment data structure with missing outcome

W = fW (UW ),

A = fA(W ,UA),

∆ = fA(W ,A,U∆),

Y = fY (W ,A,∆,UY ).

We can now define counterfactuals Y1,1 and Y0,1 corresponding with
interventions setting A and ∆.

The additive causal effect EY1 − EY0 equals:
Ψ(P) = E [E (Y | A = 1,∆ = 1,W )− E (Y | A = 0,∆ = 1,W )



Example: TMLE with Missingness

Our first step is to generate an initial estimator of P0
n of P; we estimate

E (Y | A,∆ = 1,W ), possible with super learning.

We fluctuate this initial estimator with a logistic regression:

logitP0
n(ε)(Y = 1 | A,∆ = 1,W ) = logitP0

n(Y = 1 | A,∆ = 1,W ) + εh

where

h(A,W ) =
1

Π(A,W )

(
A

g(1 |W )
− 1− A

g(0 |W

)

and
g(1 |W ) = P(A = 1 |W ) Treatment Mechanism
Π(A,W ) = P(∆ = 1 | A,W ) Missingness Mechanism

Let εn be the maximum likelihood estimator and

P∗n = P0
n(εn).

The TMLE is given by Ψ(P∗n).



Plan Payment Risk Adjustment

Over 50 million people in the United States currently enrolled in an
insurance program that uses risk adjustment.

I Redistributes funds based
on health

I Encourages competition
based on efficiency/quality

Results

I Machine learning finds
novel insights

I Potential to impact policy,
including diagnostic
upcoding and fraud

xerox.com

Rose (2016)



Plan Payment Risk Adjustment: Key Results

1 Super Learner had best performance.
2 Top 5 algorithms with reduced set of variables retained 92% of

the relative efficiency of their full versions (86 variables).
I age category 21-34
I all five inpatient diagnoses categories

I heart disease
I cancer
I diabetes
I mental health
I other inpatient diagnoses

I metastatic cancer
I stem cell transplantation/complication
I multiple sclerosis
I end stage renal disease

But what if we care about the individual impact of medical condition
categories on health spending?



TMLE Example: Impact of Medical Conditions

Evaluate how much more enrollees with each medical condition cost after
controlling for demographic information and other medical conditions.

Tr e n d s
National Health Spending By Medical
Condition, 1996–2005
Mental disorders and heart conditions were found to be the most
costly.

by Charles Roehrig, George Miller, Craig Lake, and Jenny Bryant

ABSTRACT: This study responds to recent calls for information about how personal health
expenditures from the National Health Expenditure Accounts are distributed across medi-
cal conditions. It provides annual estimates from 1996 through 2005 for thirty-two condi-
tions mapped into thirteen all-inclusive diagnostic categories. Circulatory system spending
was highest among the diagnostic categories, accounting for 17 percent of spending in
2005. The most costly conditions were mental disorders and heart conditions. Spending
growth rates were lowest for lung cancer, chronic obstructive pulmonary disease, pneumo-
nia, coronary heart disease, and stroke, perhaps reflecting benefits of preventive care.
[Health Affairs 28, no. 2 (2009): w358–w367 (published online 24 February 2009;
10.1377/hlthaff.28.2.358)]

Th e n at i o n a l Health Expenditure
Accounts (NHEA) provide official es-
timates of total annual U.S. health care

spending for use by researchers and policy-
makers. They routinely track personal health
spending by type of service (such as hospital,
physician, and prescription drugs) and source
of funds (such as private insurance, Medicare,
and Medicaid), but they do not track spend-
ing by medical condition. Yet such informa-
tion is critical to a more complete under-
standing of what lies behind the increase in
spending, what Americans are getting in re-
turn, and where we should focus efforts to
improve health and health care. For these rea-
sons, participants at a recent conference to

discuss improvements to the NHEA recom-
mended that they be extended to include
spending by disease.1 This was consistent
with an earlier Institute of Medicine (IOM)
recommendation that the Agency for Health-
care Research and Quality (AHRQ) identify
at least fifteen priority conditions, “taking
into account frequency of occurrence, health
burden and resource use.”2

The information gap is largely attributable
to the complexity of filling it. First is the con-
ceptual problem of allocating spending to
medical conditions.3 Second is the practical
problem of identifying data and methods that
cover the full range of expenditures in the
NHEA. Previous researchers have made major
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WhichMedical Conditions
Account For The Rise In Health
Care Spending?
The fifteen most costly medical conditions accounted for half of the
overall growth in health care spending between 1987 and 2000.

by Kenneth E. Thorpe, Curtis S. Florence, and Peter Joski

ABSTRACT: We calculate the level and growth in health care spending attributable to the
fifteen most expensive medical conditions in 1987 and 2000. Growth in spending by medi-
cal condition is decomposed into changes attributable to rising cost per treated case,
treated prevalence, and population growth. We find that a small number of conditions ac-
count for most of the growth in health care spending—the top five medical conditions ac-
counted for 31 percent. For four of the conditions, a rise in treated prevalence, rather than
rising treatment costs per case or population growth, accounted for most of the spending
growth.

The r i s ing cost of health care , and what to do about it, is perhaps
the most challenging health policy issue facing the United States. Health
care is projected to account for 15.2 percent of U.S. gross domestic product

(GDP) in 2004, compared with 11.1 percent fifteen years ago.1 During this period
health care spending increased at an average annual rate of 7.5 percent per year (in
nominal dollars) and 5.1 percent per year when adjusting for inflation (using the
GDP deflator).2 During the past three years, the cost of health insurance has in-
creased by an average of 12.5 percent per year.3

The most common factor cited as driving rising health costs has been the explo-
sion of new medical technologies, which can improve care but tend to cost more
than older modalities of treatment.4 However, total cost is also a function of how
many people are receiving treatment for a given condition. The rise in treated-case
prevalence may reflect improvements in medical technology that allow expanded
treatment of a particular condition. It could also reflect changes in the diagnosis
or reporting of disease. Finally, the rise could reflect factors such as the aging of
the population. Distinguishing among these scenarios—increasing cost per case
and increasing population-based use of treatments—could provide an important
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nominal dollars) and 5.1 percent per year when adjusting for inflation (using the
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TMLE Example: Impact of Medical Conditions

I Truven MarketScan database,
those with continuous coverage in
2011-2012; 10.9 million people.
Variables: age, sex, region,
procedures, expenditures, etc.

I Enrollment and claims from private health plans and employers.

I Extracted random sample of 1,000,000 people.

I Enrollees were eligible for insurance throughout this entire 24 month
period and thus there is no drop-out due to death.



TMLE Example: Impact of Medical Conditions

Female Metropolitan
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TMLE Example: Impact of Medical Conditions

Major Depression & Bipolar
Breast (Age 50+) & Prostate Cancer

Heart Arrhythmias
Rheumatoid Arthritis

Congestive Heart Failure
Inflammatory Bowel Disease

Seizure Disorders
Colorectal, Breast (Age <50) & Kidney Cancer

Lupus
Thyroid Cancer & Melanoma

Pancreatic Disorders & Intestinal Malabsorption
Hematological Disorders

Multiple Sclerosis
Pulmonary Embolism

HIV/AIDS
Sepsis

Non-Hodgkin's Lymphomas
Chronic Hepatitis

Intestinal Obstruction
Acute Ischenic Heart Disease

Lung Fibrosis
Chronic Skin Ulcer
Metastatic Cancer

Lung, Brain & Severe Cancers
Acute Myocardial Infarction

Stroke

Medical Condition Categories

Percent

0.0 0.5 1.0 1.5 2.0 2.5

n=1,000,000



TMLE Example: Impact of Medical Conditions

ψ = EW ,M− [E (Y | A = 1,W ,M−)− E (Y | A = 0,W ,M−)],

represents the effect of A = 1 versus A = 0 after adjusting for all other
medical conditions M− and baseline variables W .

Interpretation

The difference in total annual expenditures when enrollees have the
medical condition under consideration (i.e., A = 1).

Y=total annual expenditures, A=medical condition category of interest



TMLE Example: Impact of Medical Conditions

Leverage

I available big data

I novel machine
learning tools

to improve conclusions
and policy insights

Rose (2017)



TMLE Example: Impact of Medical Conditions

First investigation of the impact of medical conditions on health spending
as a variable importance question using double robust estimators.

Five most expensive medical conditions were

1 multiple sclerosis

2 congestive heart failure

3 lung, brain, and other severe cancers

4 major depression and bipolar disorders

5 chronic hepatitis.

I Differing results compared to parametric regression.

I What does this mean for incentives for prevention and care?
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Hospital Profiling

Spertus et al. (2016)



Effect Estimation Literature

I Maximum-Likelihood-Based Estimators: g-formula, Robins 1986

I Estimating equations: Robins and Rotnitzky 1992, Robins 1999,
Hernan et al. 2000, Robins et al. 2000, Robins 2000, Robins and
Rotnitzky 2001.

I Additional bibliographic history found in Chapter 1 of van der Laan
and Robins 2003.

I For even more references, see Chapter 4 of Targeted Learning.
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TMLE Packages

I tmle (Gruber): Main point-treatment TMLE package

I ltmle (Schwab): Main longitudinal TMLE package

I SAS code (Brooks): Github

I Julia code (Lendle): Github

More: targetedlearningbook.com/software



[TMLE Example Code]



TMLE Sample Code

##Code lightly adapted from Schuler & Rose, 2017, AJE##

library(tmle)

set.seed(1)

N <- 1000



TMLE Sample Code

##Generate simulated data##

#X1=Gender; X2=Therapy; X3=Antidepressant use

X1 <- rbinom(N, 1, prob=.55)

X2 <- rbinom(N, 1, prob=.30)

X3 <- rbinom(N, 1, prob=.25)

W <- cbind(X1,X2,X3)

#Exposure=regular physical exercise

A <- rbinom(N, 1, plogis(-0.5 + 0.75*X1 + 1*X2 + 1.5*X3))

#Outcome=CES-D score

Y <- 24-3*A+3*X1-4*X2-6*X3-1.5*A*X3+rnorm(N,mean=0,sd=4.5)



TMLE Sample Code

##Examine simulated data##

data <- data.frame(cbind(A,X1,X2,X3,Y))

summary(data)

barplot(colMeans(data[,1:4]))



TMLE Sample Code



TMLE Sample Code



TMLE Sample Code

##Specify a library of algorithms##

SL.library <- c("SL.glm","SL.step.interaction","SL.glmnet",

"SL.randomForest","SL.gam","SL.rpart" )



TMLE Sample Code

Could use various forms of ”screening” to consider differing variable sets

SL.library <- list(c("SL.glm","screen.randomForest", "All"),

c("SL.mean", "screen.randomForest", "All"),

c("SL.randomForest", "screen.randomForest", "All"),

c("SL.glmnet", "screen.randomForest","All"))

Or the same algorithm with different tuning parameters

SL.glmnet.alpha0 <- function(..., alpha=0){

SL.glmnet(..., glmnet.alpha=alpha)}

SL.glmnet.alpha50 <- function(..., alpha=.50){

SL.glmnet(..., glmnet.alpha=alpha)}

SL.library <- c("SL.glm","SL.glmnet", "SL.glmnet.alpha50",

"SL.glmnet.alpha0","SL.randomForest")



TMLE Sample Code

##Specify a library of algorithms##

SL.library <- c("SL.glm","SL.step.interaction","SL.glmnet",

"SL.randomForest","SL.gam","SL.rpart" )



TMLE Sample Code

##TMLE approach: Super Learning##

tmleSL1 <- tmle(Y, A, W,

Q.SL.library = SL.library, g.SL.library = SL.library)

tmleSL1



TMLE Sample Code



TMLE Sample Code

True value is -3.38



TMLE Sample Code

##TMLE approach: GLM, MT misspecification of outcome##

#Misspecified outcome regression: Y ~ A + X1 + X2 + X3#

tmleGLM1 <- tmle(Y, A, W, Qform=Y~A+X1+X2+X3, gform=A~X1+X2+X3)

tmleGLM1



TMLE Sample Code

True value is -3.38



TMLE Sample Code

##TMLE approach: GLM, OV misspecification of outcome##

#Misspecified outcome regression: Y ~ A + X1 + X2#

tmleGLM2 <- tmle(Y, A, W, Qform=Y~A+X1+X2, gform=A~X1+X2+X3)

tmleGLM2



TMLE Sample Code

True value is -3.38



TMLE Sample Code

##TMLE approach: GLM, OV misspecification of exposure##

#Misspecified exposure regression: A ~ X1 + X2#

tmleGLM3 <- tmle(Y, A, W, Qform=Y~A+X1+X2+X3+A:X3, gform=A~X1+X2)

tmleGLM3



TMLE Sample Code

True value is -3.38



TMLE Sample Code

determining the optimal weighted algorithm. Researchers
have recently implemented super learning for propensity
score estimation (40, 41).

Fundamentally, TMLE and the other estimators discussed
can be implemented using machine learning algorithms, which
can prove advantageous in complex observational data. As
our simulation results demonstrate, super learning performed
better than or equal to parametric regression for all 3 estima-
tors. The ability of super learning to protect against certain
types of functional form misspecification is demonstrated by
the G-computation results, as super learning yielded smaller
bias than parametric regression with only main terms. Given
the complexity of data in typical observational studies, correct
specification of all parametric regressions is unlikely, yet bias
can arise from even minor functional form misspecification.
Machine learning algorithms, particularly ensemble methods
such as super learning, can empirically identify interaction,
nonlinear, and higher-order relationships among variables;
therefore, the corresponding ATE estimate is less likely to be
biased due to a misspecified functional form in comparison
with main-terms parametric regression. Additionally, while
TMLE with super learning and parametric regression per-
formed equivalently in our simulation study, TMLE with

super learning may outperform parametric regression in cases
of more complex data (14, 39, 41).

Implementation of TMLE is conceptually similar to and
shares estimation steps with other statistical methods used for
causal estimation in epidemiologic research. TMLE has
attractive statistical properties, particularly double robustness.
Additionally, it is straightforward to implement, as open-
source software is available (32, 45). As a flexible estimation
method that can easily incorporate nonparametric machine
learning methods, TMLE is another advanced tool that can
be added to the applied practitioner’s statistical toolbox.
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TMLE Packages

I tmle (Gruber): Main point-treatment TMLE package

I ltmle (Schwab): Main longitudinal TMLE package

I SAS code (Brooks): Github

I Julia code (Lendle): Github

More: targetedlearningbook.com/software
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