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Goals: Day 2

@ Understand shortcomings of standard parametric regression-based
techniques for the estimation of causal effect quantities.

@ Be introduced to the ideas behind machine learning approaches as
tools for confronting the curse of dimensionality.

© Become familiar with the properties and basic implementation of
TMLE for effect estimation.



[Motivation]
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Big data and the future

At the beginning of her career Sherri Rose discusses big data and stands amazed at its potential.
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Electronic Health Databases

The increasing availability of electronic medical records offers a new
resource to public health researchers.

General usefulness of this type of data to answer targeted scientific
research questions is an open question.

Need novel statistical methods that have desirable statistical properties
while remaining computationally feasible.



Yesterday Super Learner: Kaiser Permanente Database

Nested case-control sample (n=27,012).

» QOutcome: death.

» Covariates: 184 medical flags, gender & age.
Ensembling method outperformed all other algorithms.

Generally weak signal with R? = 0.11.

Observed data structure on a subject can be represented as
O =(Y,A, AX), where X = (W, Y) is the full data structure, and A
denotes the indicator of inclusion in the second-stage sample.

How will this electronic database perform in comparison to a cohort study?

van der Laan & Rose (2011)



Yesterday Super Learner: Sonoma Cohort Study

Cohort study of n = 2,066 residents of Sonoma, CA aged 54 and over.
» Outcome: death.

» Covariates: gender, age, self-rated health, leisure-time physical
activity, smoking status, cardiac event history, and chronic health
condition status.

» R?2=10.201

Two-fold improvement with less than 10% of the subjects & less than 10%
the number of covariates.

What possible conclusions can we draw?

Rose (2013)



High Dimensional ‘Big Data’ Parametric

» Often dozens, hundreds, or even
thousands of potential variables
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High Dimensional ‘Big Data’ Parametric

» Often dozens, hundreds, or even
thousands of potential variables

> Impossible challenge to correctly
specify the parametric regression
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High Dimensional ‘Big Data’ Parametric

» Often dozens, hundreds, or even
thousands of potential variables

> Impossible challenge to correctly
specify the parametric regression

» May have more unknown parameters
than observations
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High Dimensional ‘Big Data’ Parametric Regression

» Often dozens, hundreds, or even
thousands of potential variables

» Impossible challenge to correctly
specify the parametric regression

» May have more unknown parameters
than observations

» True functional might be described by
a complex function not easily
approximated by main terms or
interaction terms
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Complications of Human Art in ‘Big Data’ Statistics

©00

Fit several parametric models; select a favorite one

The parametric model is misspecified

The target parameter is interpreted as if the parametric model is
correct

The parametric model is often data-adaptively (or worse!) built, and
this part of the estimation procedure is not accounted for in the
variance



Estimation is a Science

@ Data: realizations of random variables with a probability distribution.

@ Statistical Model: actual knowledge about the shape of the
data-generating probability distribution.

© Statistical Target Parameter: a feature/function of the
data-generating probability distribution.

@ Estimator: an a priori-specified algorithm, benchmarked by a
dissimilarity-measure (e.g., MSE) w.r.t. target parameter.



Roadmap for Effect Estimation

How does one translate the results from studies, how do we take the
information in the data, and draw effective conclusions?

» Define the Research Question

» Specify Data

» Specify Model

» Specify the Parameter of Interest
» Estimate the Target Parameter
> Inference

» Standard Errors / Cls
> Interpretation



Data

Random variable O, observed n times, could be defined in a simple case as

O =(W,AY) ~ Py if we are without common issues such as missingness
and censoring.

» W: vector of covariates
» A: exposure or treatment

» Y: outcome

This data structure makes for effective examples, but data structures
found in practice are frequently more complicated.



Data: Censoring & Missingness

Define O = (W, A, T,A) ~ Py.
» T: time to event Y
» C: censoring time
» T =min(T, C): represents the T or C that was observed first
» A=I(T < T)=1I(C> T): indicator that T was observed at or
before C

Define O = (W, A, A, AY) ~ Py.

» A: Indicator of missingness



Model

General case: Observe ni.i.d. copies of random variable O with probability
distribution Py.

The data-generating distribution Py is also known to be an element of a
statistical model M: Py € M.

A statistical model M is the set of possible probability distributions for
Po; it is a collection of probability distributions.

If all we know is that we have n i.i.d. copies of O, this can be our
statistical model, which we call a nonparametric statistical model



Model

A statistical model can be augmented with additional (nontestable causal)
assumptions, allowing one to enrich the interpretation of W(Pp).

This does not change the statistical model.



Target Parameters

Define the parameter of the probability distribution P as function of
P:W(P).

Yro = Vrp(P) = Ewl[E(Y[|A=1W)-E(Y|A=0,W)
E(Y1) — E(Yo)
= P(vi=1)-P(Yo=1)

_P(ri=1)
wRR—m

and

PV =1)P(Yy =0)
Vor = P(Y, =0)P(Yo=1)

Y is the outcome, A the exposure, and W baseline covariates.



Effect Estimation vs. Prediction

Both effect and prediction research questions are inherently estimation
questions, but they are distinct in their goals.
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Both effect and prediction research questions are inherently estimation
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Effect: Interested in estimating the effect of exposure on outcome
adjusted for covariates.



Effect Estimation vs. Prediction

Both effect and prediction research questions are inherently estimation
questions, but they are distinct in their goals.

Effect: Interested in estimating the effect of exposure on outcome
adjusted for covariates.

Prediction: Interested in generating a function to input covariates and
predict a value for the outcome.



[(Causal) Effect Estimation]



Learning from Data

Just what type of studies are we conducting? The often quoted “ideal
experiment” is one that cannot be conducted in real life.

EXPOSED UNEXPOSED EXPOSED UNEXPOSED
Subject 1 Subject 1 Subject 1

Subject 2 Subject 2 Subject 2

>0

A i

Subject 3 Subject 3 Subject 3

IDEAL EXPERIMENT REAL-WORLD STUDY




Causal Model

Assume a structural causal model (SCM) (Pearl 2009), comprised of
endogenous variables X = (X; : j) and exogenous variables U = (Ux; : j).

» Each Xj is a deterministic function of other endogenous variables and
an exogenous error U;.
» The errors U are never observed.

» For each X; we characterize its parents from among X with Pa(X;).



Causal Model

—fx(Pa( ) Ux) J:1,J,

The functional form of fx; is often unspecified.

An SCM can be fully parametric, but we do not do that here as our
background knowledge does not support the assumptions involved.



Causal Model

We could specify the following SCM:

A = fa(W,Un),
Y = fy(W,A Uy),

Recall that we assume for the full data:

© for each X, X; = fj(Pa(X;), Ux;) depends on the other endogenous
variables only through the parents Pa(X;),

@ the exogenous variables have a particular joint distribution Py;
Ua L Uy | W.

In our simple study, X = (W, A, Y), and Pa(A) = W. We know this due
to the time ordering of the variables.



Causal Graph
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Figure: Causal graphs with various assumptions about the distribution of Py



A Note on Causal Assumptions

We could alternatively use the Neyman—Rubin Causal Model and assume
» randomization (A L Y, | W) and

> stable unit treatment value assumption (SUTVA; no interference
between subjects and consistency assumption).



Positivity Assumption

We need that each possible exposure level occurs with some positive
probability within each stratum of W.

For our data structure (W, A, Y) we are assuming:
Po(A=1|W =w)>0and Po(A=0| W =w) >0,

for each possible w.



Landscape: Effect Estimators

An estimator is an algorithm that can be applied to any empirical

distribution to provide a mapping from the empirical distribution to the
parameter space.

» Maximum-Likelihood-Based Estimators
» Estimating-Equation-Based Methods

The target parameters we discussed depend on Py through the conditional
mean Qo(A, W) = Eo(Y | A, W), and the marginal distribution Qw o of
W. Thus we can also write W(Qq), where Qo = (Qo, Qw 0).



Landscape: Effect Estimators

» Maximum-Likelihood-Based Estimators will be of the type
o =V(Qn) = Z{Qn (1, W;) — @n(0, W)},

where this estimate is obtained by plugging in Q, = (@n, Qw.n) into
the mapping V. Q,(A=a, W;) = E,(Y | A=a,W)).

» Estimating-Equation-Based Methods An estimating function is a
function of the data O and the parameter of interest. If D(¢)(O) is
an estimating function, then we can define a corresponding estimating
equation: 0 = Y"7_; D(4)(0;), and solution 1), satisfying
7 D()(07) = 0.



Maximum-Likelihood-Based Methods

MLE using regression. Outcome regression estimated with parametric
methods and plugged into

Vo= S {Qu(1, W) — a0, W)}



Maximum-Likelihood-Based Methods

MLE using regression. Outcome regression estimated with parametric
methods and plugged into

Vo= S {Qu(1, W) — a0, W)}

STOP! When does this differ from traditional regression?



Maximum-Likelihood-Based Methods

MLE using regression: Continuous outcome example.
True effect is -0.35

Wi = gender

W, = medication use

A = high ozone exposure

Y = continuous measure of lung function

Model 1: E(Y | A) = ag + 1A
Both Effects: -0.23

Model 2: E(Y | A, W) =g+ 1A+ a Wi + azsWs
Both Effects: -0.36

Model 3: E(Y | A, W) =g+ a1tA+a Wi +a3zA- Ws
Regression Effect: -0.49
MLE Effect: -0.34



Maximum-Likelihood-Based Methods

MLE using regression: Binary outcomes.

1
1+ e PotBiA+5W

P(Y=1|A W)=

n

1 1
EYa=P(Yo=1)= n Zl 1 + e—PotBiAi+BW,
=

EYi/(1—EY7)

Evo/(1—EYy) e



Medical Schools in Fragile States: Delivery of Care

We found that fragile states lack the infrastructure to train sufficient
numbers of medical professionals to meet their population health needs.
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Bosria and |7 e, \
Herzegovinal / 9 \\

Kosovg] 2, r=d]
West Bank|__ /// ) '
and Gaza / s ‘Afghanistan

= v i Q//_ R
v N\

\—— PR
% R \\\\\ . Kirbat]—__
o iz 5
Swermlece / N — [Somalia| Paupa New ~
Togo] Congo‘ /
Cms divoire / Dem [Central African Rep) \ ‘Solomon Islands
[a0 Tome and Principe] M - Q\ /
[conso o] b Feomarer Legend / /
Tongal

Fragile states were 1.76 (95%Cl 1.07-2.45) to 2.37 (95%Cl 1.44-3.30)
times more likely to have < 2 medical schools than non-fragile states.

Mateen, McKenzie, Rose (2017)



Maximum-Likelihood-Based Methods

MLE using machine learning. Outcome regression estimated with
machine learning and plugged into

Vo= S {Qu(1 W) — a0, W)}

i=1



Machine Learning Estimation of Q(A, W) = E(Y | A, W)



Machine Learning Big Picture

Machine learning aims to
» “smooth” over the data

» make fewer assumptions

Polley etal. (2011)



Machine Learning Big Picture

Purely nonparametric model °l
with high dimensional data?
X X
> p>nl
> i o N .
data sparsity T T o
. i “

Polley etal. (2011)



Machine Learning Big Picture: Ensembling

» Ensembling methods allow implementation of multiple algorithms.

» Do not need to decide beforehand which single technique to use; can
use several by incorporating cross-validation.

Learning 5 Training
Set Set

T Validation
v Y Set

1 1 1 1 1 1 1 1 1 -
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 - 3 3
4 4 4 4 4 4 - 4 4 4
5 5 5 5 5 - 5 5 5 5
6 6 6 6 - 6 6 6 6 6
7 7 7 - 7 7 7 7 7 7
8 8 - 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9
10 10 10 10 10 10 10 10 10
Fold1  Fold2  Fold3  Fold4 Fold5 Fold6  Fod7  Fold8  Fold9  Fold 10



Machine Learning Big Picture: Ensembling

Build a collection of algorithms consisting of all weighted averages of the
algorithms.

One of these weighted averages might perform better than one of the
algorithms alone.

%7\ algorithm,
2 algorithm,
[ 2 % (% [ %]
Lo algorithm, . .
Cotlestion of é'zl—_ﬁ] algorithm, S
Algorithms algorithm, V3] Zoa [ Zon [ [ 200 ]
L algorithm,
1 algorithm,
2 algorithm,
L | | —
. Family of weighted

l Super learner function ]<—{ E[Y1Z]= q, Z,+a, Z+.+q, Z, l




Noncommunicable Disease and Poverty

Studied relative risk of death from noncommunicable disease on three
poverty measures in Matlab, Bangladesh.

Parametric regression standardization

Asset quintile 1.19

Self-rated condition 1.16

Landholding 1.14
Machine-learning (super learner) estimation

Asset quintile 1.15

Self-rated condition 1.13

Landholding 1.11

Implemented parametric and machine learning substitution estimators.

Mirelman et al. (2016)



Estimating Equation Methods

IPW. Estimate causal risk difference with

Z{/ (Ai=1)— (A =0)} ———— (A,,W,)

This estimator is a solution of an IPW estimating equation that relies on
an estimate of the treatment mechanism, playing the role of a nuisance
parameter of the IPW estimating function.

A-IPW. One estimates W(Pp) with

B {I(A; = 1) — I(A; = 0)}
U = fz (A W)

(Yl - Qn(Ai, VVI))

- Z{Qn(l, W;) — Qn(0, W;)}.
i=1



Targeted Learning in Nonparametric Models

» Parametric MLE not targeted for effect parameters

» Need a subsequent targeted bias-reduction step

Targeted Learning

v

Avoid reliance on human art and unrealistic parametric models

v

Define interesting parameters

v

Target the parameter of interest

v

Incorporate machine learning

Statistical inference

v



TMLE for Causal Effects

TMLE

Produces a well-defined, unbiased, efficient substitution estimator of target
parameters of a data-generating distribution.

It is an iterative procedure that updates an initial (super learner) estimate
of the relevant part Qg of the data generating distribution Py, possibly
using an estimate of a nuisance parameter gp.




TMLE for Causal Effects

Super Learner

Allows researchers to use multiple algorithms to outperform a single
algorithm in nonparametric statistical models.

Builds weighted combination of estimators where weights are optimized
based on loss-function specific cross-validation to guarantee best overall fit.

v

Targeted Maximum Likelihood Estimation

With an initial estimate of the outcome regression, the second stage of
TMLE updates this initial fit in a step targeted toward making an optimal
bias-variance tradeoff for the parameter of interest.




TMLE for Causal Effects

TMLE: Double Robust

» Removes asymptotic residual bias of initial estimator for the target
parameter, if it uses a consistent estimator of censoring/treatment
mechanism gp.

» If initial estimator was consistent for the target parameter, the
additional fitting of the data in the targeting step may remove finite
sample bias, and preserves consistency property of the initial
estimator.

TMLE: Efficiency
» If the initial estimator and the estimator of gy are both consistent,
then it is also asymptotically efficient according to semi-parametric
statistical model efficiency theory.




TMLE for Causal Effects

TMLE: In Practice

Allows the incorporation of machine learning methods for the estimation of

both Qp and gy so that we do not make assumptions about the probability
distribution Py we do not believe.

Thus, every effort is made to achieve minimal bias and the asymptotic
semi-parametric efficiency bound for the variance.



Targeted Learning in Nonparametric
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Example: TMLE for the Risk Difference

Note that ¢, is obtained by performing a regression of Y on H; (A, W),

where Q9(A, W) is used as an offset, and extracting the coefficient for
H: (A, W).

We then update QY with logitQL(A, W) = logitQ2(A, W) + eL Hx (A, W).
This updating process converges in one step in this example, so that the
TMLE is given by Q) = Q,l,.



Example: Sonoma Cohort Study

Cohort study of n = 2,066 residents of Sonoma, CA aged 54 and over.
» Outcome was death.

» Covariates were gender, age, self-rated health, leisure-time
physical activity, smoking status, cardiac event history, and chronic
health condition status.

» The data structure is O = (W, A, Y), where Y = I(T <5 years), T
is time to the event death

> No right censoring in this cohort.



Sonoma Study

Variable Description

Y Death occurring within 5 years of baseline
A LTPA score > 22.5 METs at baselinet
Wi Health self-rated as “excellent”

Wo Health self-rated as “fair”
W3 Health self-rated as “poor”

W, Current smoker

Ws Former smoker

We Cardiac event prior to baseline

We Chronic health condition at baseline

W x < 60 years old

Wo 60 < x < 70 years old
Wio 80 < x < 90 years old
Wi1 x > 90 years old

Wio Female

i LTPA is calculated from a detailed questionnaire where prior performed vigorous physical activities are assigned standardized
intensity values in metabolic equivalents (METs). The recommended level of energy expenditure for the elderly is 22.5 METs.



Sonoma Study

Super learner
function

\

ID Wi Wi2 A Y
1 66 0 1 1
2066| 73 | | 1 | 1 | 1
|
D | Wi Y [@nwo [@aa wa [@do. wi
1 66 1 0.77
2066 | 73 | | 1 | | o.éz

Step 1

Step 2




Sonoma Study: Estimating Q,

Super learner
function

Super learner
exposure
mechanism
function

ID Wi Wi2 A Y
1 66 0 1 1
2066 | 73 | IEENE
D | Wi Y @@ wo [@ha w [@2o.w))
| 1 66 1 0.77
K | | 0.82
W+ Q%(0, W) [gn(1 | Wi) | gn(0 | W5)
66 0.77 0.32

Step 1

Step 2

Step 3




Sonoma Study: Estimating Q,

At this stage we could plug our estimates Q9(1, W;) and Q9(0, W;) for
each subject into our substitution estimator of the risk difference:

Unen = W(Qn) = - D (R0, W) — G3(0, W)},
i=1



Sonoma Study: Estimating g

Our targeting step required an estimate of the conditional distribution of
LTPA given covariates W.

This estimate of Py(A | W) = go is denoted gj,.

We estimated predicted values using a super learner prediction function,
adding two more columns to our data matrix: g,(1 | W;) and g,(0 | W;).

(Step 3.)



D | Wi Y [ wy [@aa wa [@uo. wi
B 66 1 0.77
Step 2
[ + [ .. | .. [os
0 (0 T 7
Super leamer Wi @00, W) [an T Wo) g0 W)
exposure 66 .. | 077 0.32
mechanism : - : : : ' Step 3
function : : 0 . . .
2066 | 73 | .. [o08 [ .. [o045
\i
ID W1 u(0 | Wy) | HZ (A, Wi | HZ(L, W) | HE(0, W5)
1 66 0.32 .. | 313
Step 4
2066 | 73 | .. Joas | .. | .. [-22

nm |EVYYPR | Trrein vy VAt s | AL vy




Sonoma Study: Determining a Submodel

The targeting step used the estimate g, in a clever covariate to define a

parametric working model coding fluctuations of the initial estimator. This
clever covariate H;;(A, W) is given by

. CIA=1) I(A=0)
(A W) = <gn<1 W) &0 W))'




Sonoma Study: Determining a Submodel

Thus, for each subject with A; =1 in the observed data, we calculated the
clever covariate as H(1, W;) = 1/gn(1 | W;).

Similarly, for each subject with A; = 0 in the observed data, we calculated
the clever covariate as H(0, W;) = —1/g,(0 | W;).

We combined these values to form a single column H}(A;, W;) in the data
matrix. We also added two columns H;i(1, W;) and H;;(0, W;). The values
for these columns were generated by setting a =0 and a = 1.

(Step 4.)



0 17 In ,'/ gn ,',

Super learner ID W1 e Q500 W5) | 9n (1] Wi) | 9n(0 | W3)
mechanism : - : : - ' Step 3

function : : : . - .
2066 | 73 | .. [os2 [ .. [o045
Y

1D W1 In (0 | W3) H (A, W) Hy(1,W;) H;(O. H'})

1 66 .. | 032 .. | 313
Step 4

206 | 73 | .. Joas | .. | .. ]2

D | Wi L [Hiow) [ahwwy [ ako,w)

1 66 . | -3.13 0.74
Step 5

2066 | 73 | .. [212 | .. [ o1

o o Im o AAL1 tasN . ANln a7 s A




Sonoma Study: Updating QS

We then ran a logistic regression of our outcome Y on the clever covariate
using as intercept the offset logitQ%(A, W) to obtain the estimate ¢,

where €, is the resulting coefficient in front of the clever covariate
H: (A, W).

We next wanted to update the estimate QS into a new estimate Q,% of the
true regression function Qp:

logit @} (A, W) = logit Q2(A, W) + e, Hi (A, W).

This parametric working model incorporated information from g, through
H*(A, W), into an updated regression.



Sonoma Study: Updating QS

The TMLE of Qo was given by Qi = (Q}, Q% ,). With €,, we were ready
to update our prediction function at a =1 and a = 0 according to the
logistic regression working model. We calculated

logit QX(1, W) = logitQ2(1, W) + e, H*(1, W),
for all subjects, and then
logit Q1(0, W) = logitQ°(0, W) + €,H(0, W)

for all subjects and added a column for Q(1, W;) and Q1(0, W;) to the
data matrix.

Updating @V is also illustrated in Step 5.



@Z}n:_

D | Wi (0| W) | Hi(Ae W) [ 131, W) [ H (0, W)
1 66 0.32 -3.13
2066 | 73 | | 0.45 | | | 2.22
D | wi H2(0,W;) [ QAL W) [ QL(0, i)
1 66 3.13 0.74
2066 | 73 | | 2.12 | | 0.81
1 n

n

=1

Step 4

Step 5

Step 6




Sonoma Study: Targeted Substitution Estimator

Our formula from the first step becomes
* 1 - 2 2
vrmien = V(Q) = > {Qn(1, Wi) — Qp(0. Wi}
i=1

This mapping was accomplished by evaluating Q(1, W;) and QL(0, W;)
for each observation i, and plugging these values into the above equation.

Our estimate of the causal risk difference for the mortality study was
Y1mLe,n = —0.055.



ID Wi e |HRO.W) (@R W5) | QL(0,W5)
1 66 -3.13 0.74

2066| 73 | |-2:12 | |o.§1

Yn = 5 i [Qn (1L, Wi) — Qu(0,W3)]  step6

Step 5




Sonoma Study: Inference (Standard errors)

We then needed to calculate the influence curve for our estimator in order
to obtain standard errors:

0~ (K470 - ) - on

+Q (1, W;) — QL(0, W;) — TmLE s

where [ is an indicator function: it equals 1 when the logical statement it
evaluates, e.g., A; = 1, is true.



Sonoma Study: Inference (Standard errors)

Note that this influence curve is evaluated for each of the n observations

O;.

With the influence curve of an estimator one can now proceed with
statistical inference as if the estimator minus its estimand equals the
empirical mean of the influence curve.



Sonoma Study: Inference (Standard errors)

Next, we calculated the sample mean of these estimated influence curve
values: IC, =157 1 IC,(0;). For the TMLE we have /C, = 0. Using this
mean, we calculated the sample variance of the estimated influence curve
values:

S2(IC,) = 132 (ICa(01) — )2
Lastly, we used our sample variance to estimate the standard error of our
estimator:

S2(IC,)

n

Op —

This estimate of the standard error in the mortality study was o, = 0.012.



Sonoma Study: Inference (Cls)

On
YTMLE,n £ 20.975%7

where z, denotes the a-quantile of the standard normal density N(O, 1).



Sonoma Study: Inference (p-values)

A p-value for ¥1ymiE,» can be calculated as:
YTMLE,n

2o ([T )

where ® denotes the standard normal cumulative distribution function.

The p-value was < 0.001 and the confidence interval was
[—0.078, —0.033].



Sonoma Study: Interpretation

The interpretation of our estimate {)1p e, = —0.055, under causal
assumptions, is that meeting or exceeding recommended levels of LTPA

decreases 5-year mortality in an elderly population by 5.5 percentage
points.

This result was significant, with a p-value of < 0.001 and a confidence
interval of [-0.078, —0.033].



Example: TMLE with Missingness

SCM for a point treatment data structure with missing outcome

/\ W = fw(Uw),
W—>A—>A A = fa(W,Ua),
xl A = fa(W,A Un),

y Y = f/(W,A A, Uy).

We can now define counterfactuals Y71 and Yp 1 corresponding with
interventions setting A and A.

The additive causal effect EY; — EYy equals:
V(P)=E[E(Y|A=1,A=1W)—-E(Y|A=0,A=1,W)



Example: TMLE with Missingness

Our first step is to generate an initial estimator of PO of P; we estimate
E(Y | A,A =1,W), possible with super learning.

We fluctuate this initial estimator with a logistic regression:
logitP(e)(Y =1 A A =1, W) =logitP’(Y =1 | A/ A=1W)+¢eh

where

1 A 1-A
AW = Fea, w) <g(1 W) g(0] W)
and

g(l| W)= P(A=1]| W) Treatment Mechanism
M(A, W) = P(A =1| A, W) Missingness Mechanism

Let €, be the maximum likelihood estimator and
P = PY(en).

The TMLE is given by W(P;).



Plan Payment Risk Adjustment

Over 50 million people in the United States currently enrolled in an

insurance program that uses risk adjustment.

» Redistributes funds based
on health

» Encourages competition
based on efficiency/quality

Results

» Machine learning finds
novel insights

» Potential to impact policy,
including diagnostic
upcoding and fraud

Rose (2016)

Xerox.com

( Hedalth Insurance

Marketplace



Plan Payment Risk Adjustment: Key Results

© Super Learner had best performance.

@ Top 5 algorithms with reduced set of variables retained 92% of
the relative efficiency of their full versions (86 variables).
> age category 21-34
» all five inpatient diagnoses categories
> heart disease

cancer
diabetes
mental health
> other inpatient diagnoses

vvyy

metastatic cancer

stem cell transplantation/complication
multiple sclerosis

end stage renal disease

v vy VvYy

But what if we care about the individual impact of medical condition
categories on health spending?

)




TMLE Example: Impact of Medical Conditions

Evaluate how much more enrollees with each medical condition cost after
controlling for demographic information and other medical conditions.




TMLE Example: Impact of Medical Conditions

Evaluate how much more enrollees with each medical condition cost after
controlling for demographic information and other medical conditions.

Heartn TRACKING

TRENDS

National Health Spending By Medical
Condition, 1996-2005

Mental disorders and heart conditions were found to be the most
costly.

by Charles Roehrig, George Miller, Craig Lake, and Jenny Bryant

ABSTRACT: This study responds to recent calls for information about how personal health
expenditures from the National Health Expenditure Accounts are distributed across medi-
cal conditions. It provides annual estimates from 1996 through 2005 for thirty-two condi-
tions mapped into thirteen alkinclusive diagnostic categories. Circulatory system spending
was highest among the diagnostic categories, accounting for 17 percent of spending in
2005. The most costly conditions were mental disorders and heart conditions. Spending
growth rates were lowest for lung cancer, chronic obstructive pulmonary disease, pneumo-
nia, coronary heart disease, and stroke, perhaps reflecting benefits of preventive care.
[Health Affairs 28, no. 2 (2009): w358-w367 (published online 24 February 2009;
10.1377/hithaff.28.2.358)]



TMLE Example: Impact of Medical Conditions

Evaluate how much more enrollees with each medical condition cost after
controlling for demographic information and other medical conditions.

Heartn TRACKING

TRENDS

National Health Spending By Medical
Condition, 1996-2005

Mental disorders and heart conditions were found to be the most
costly.

by Charles Roehrig, George Miller, Craig Lake, and Jenny Bryant WhiCh Medical Conditions

ABSTRACT: This study responds to recent calls for information about how personal health

expenditures from the National Health Expenditure Accounts are distributed across medi- Account FOI‘ The Rlse In Health

cal conditions. It provides annual estimates from 1996 through 2005 for thirty-two condi-

tions mapped into thirteen allinclusive diagnostic categories. Circulatory system spending are Spendlng')

was highest among the diagnostic categories, accounting for 17 percent of spending in

HeartTn SPENDING

2005. The most costly conditions were mental disorders and heart conditions. Spending  The fifteen most costly medical conditions accounted for half of the

rowth rates were owest for ung cancer, chronic obstructive pulmonary disease, pEUMo- e call rowth in health care spending between 1987 and 2000.
nia, coronary heart disease, and stroke, perhaps reflecting benefits of preventive care.

[Health Affairs 28, no. 2 (2009): w358-w367 (published online 24 February 2009 by Kenneth E. Thorpe, Curtis S. Florence, and Peter Joski

10.1377/hlthaff.28.2.358)]
ABSTRACT: We calculate the level and growth in health care spending attributable to the
fifteen most expensive medical conditions in 1987 and 2000. Growth in spending by medi-
cal condition is decomposed into changes attributable to rising cost per treated case,
treated prevalence, and population growth. We find that a small number of conditions ac-
count for most of the growth in health care spending—the top five medical conditions ac-
counted for 31 percent. For four of the conditions,  rise in treated prevalence, rather than
rising treatment costs per case or population growth, accounted for most of the spending
growth.



TMLE Example: Impact of Medical Conditions

» Truven MarketScan database,

those with continuous coverage in More Than Data.
2011-2012; 10.9 million people. TRUVENSE anewer

HEALTH ANALYTICS

Variables: age, sex, region,
procedures, expenditures, etc.
Enroliment and claims from private health plans and employers.
» Extracted random sample of 1,000,000 people.

Enrollees were eligible for insurance throughout this entire 24 month
period and thus there is no drop-out due to death.

MARKETSCAN® RESEARCH




TMLE Example: Impact of Medical Conditions

Sex and Location

Age
o
©
-— -— o
[ c <
8 2 g
: S| -
o o
Female Metropolitan 21t034 35t0 54
Region Inpatient Diagnoses
o o
g @ €
[ [
a o
o =) -  E— [ —
Heart
Northeast Midwest  South West

Disease Cancer Diabetes  Other

n=1,000,000



TMLE Example: Impact of Medical Conditions

Stroke

Acute Myocardial Infarction

Lung, Brain & Severe Cancers
Metastatic Cancer

Chronic Skin Ulcer

Lung Fibrosis

Acute Ischenic Heart Disease
Intestinal Obstruction

Chronic Hepatitis

Non-Hodgkin's Lymphomas

Sepsis

HIV/AIDS

Pulmonary Embolism

Multiple Sclerosis

Hematological Disorders

Pancreatic Disorders & Intestinal Malabsorption
Thyroid Cancer & Melanoma

Lupus

Colorectal, Breast (Age <50) & Kidney Cancer
Seizure Disorders

Inflammatory Bowel Disease
Congestive Heart Failure
Rheumatoid Arthritis

Heart Arrhythmias

Breast (Age 50+) & Prostate Cancer
Major Depression & Bipolar

n=1,000,000

Medical Condition Categories

JHHHHUHUUUUUUUUUUUUUUUU”

0.0 25

Percent



TMLE Example: Impact of Medical Conditions

w: EW,M_[E(Y ‘ A= 1a W) M_)_ E(Y | AZOa W7 M_)]7

represents the effect of A =1 versus A = 0 after adjusting for all other
medical conditions M~ and baseline variables W.

Interpretation

The difference in total annual expenditures when enrollees have the
medical condition under consideration (i.e., A=1).

Y =total annual expenditures, A=medical condition category of interest



TMLE Example: Impact of Medical Conditions

Multiple X
i —— Targeted Learning
60 Sclerosis - -~ Parametric Regression
Leverage

» available b|g data 40 — Metastatic Cancer

L

. 0

> novel machine , "

Lung, Brain &

Severe Cancers

learning tools

to improve conclusions 20 A
and policy insights

\
\
\
L HIV/AIDS
\
|
|
1

Acute V1
Myocardial | |

Rose (2017) Infarction



TMLE Example: Impact of Medical Conditions

First investigation of the impact of medical conditions on health spending
as a variable importance question using double robust estimators.

Five most expensive medical conditions were
© multiple sclerosis
@ congestive heart failure
© lung, brain, and other severe cancers
@ major depression and bipolar disorders

© chronic hepatitis.

» Differing results compared to parametric regression.

» What does this mean for incentives for prevention and care?



Effect of Drug-Eluting Stents

Expected Outcome by Stent
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Rose and Normand (2017)



Hospital Profiling
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Excess Mortality

Spertus et al. (2016)



Effect Estimation Literature

» Maximum-Likelihood-Based Estimators: g-formula, Robins 1986

» Estimating equations: Robins and Rotnitzky 1992, Robins 1999,
Hernan et al. 2000, Robins et al. 2000, Robins 2000, Robins and
Rotnitzky 2001.

» Additional bibliographic history found in Chapter 1 of van der Laan
and Robins 2003.

» For even more references, see Chapter 4 of Targeted Learning.



[TMLE Example Code]



TMLE Packages

» tmle (Gruber): Main point-treatment TMLE package
» ltmle (Schwab): Main longitudinal TMLE package
» SAS code (Brooks): Github

» Julia code (Lendle): Github

More: targetedlearningbook.com/software



[TMLE Example Code]



TMLE Sample Code

##Code lightly adapted from Schuler & Rose, 2017, AJE##
library(tmle)

set.seed(1)
N <- 1000



TMLE Sample Code

##Generate simulated data##

#X1=Gender; X2=Therapy; X3=Antidepressant use
X1 <- rbinom(N, 1, prob=.55)

X2 <- rbinom(N, 1, prob=.30)

X3 <- rbinom(N, 1, prob=.25)

W <- cbind(X1,X2,X3)

#Exposure=regular physical exercise
A <- rbinom(N, 1, plogis(-0.5 + 0.75%X1 + 1*X2 + 1.5%X3))

#0utcome=CES-D score
Y <- 24-3%A+3%X1-4*X2-6*X3-1.5%A*xX3+rnorm(N,mean=0,sd=4.5)



TMLE Sample Code

##Examine simulated data##

data <- data.frame(cbind(A,X1,X2,X3,Y))
summary (data)
barplot (colMeans(datal,1:4]))



TMLE Sample Code

> summary(data)

Min. :0.
.000
.000

1st Qu.:
Median :

3rd Qu.:
Max. .
X3

Min. :0.
1st Qu.:0.
Median :0.
Mean :0.

1.000
Max. :1.

3rd Qu.:

@
1
Mean :0.
1
1

{10

632

.00
.0e0

(%]
4[5
[1%]
254

4[5

X1
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max.

Y
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max .

PRoRe®

.00
.0eo
.00
.568
.00
.6eo

1 @.9629

16.4549

121.2744
120.8369

25.2316

:39.8796

X2
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max .

Phooe®

.00
.0e0
.00
.30e1
.00
.00



TMLE Sample Code

A X1 X2 X3

0.3 0.4 0.5 0.6
| |

0.2

0.1

0.0
|



TMLE Sample Code

##Specify a library of algorithms##

SL.library <- c("SL.glm","SL.step.interaction","SL.glmnet",
"SL.randomForest","SL.gam","SL.rpart" )



TMLE Sample Code

Could use various forms of "screening” to consider differing variable sets

SL.library <- list(c("SL.glm","screen.randomForest", "All"),
c("SL.mean", "screen.randomForest", "All"),
c("SL.randomForest", "screen.randomForest", "All"),
c("SL.glmnet", "screen.randomForest","All"))

Or the same algorithm with different tuning parameters

SL.glmnet.alphaO <- function(..., alpha=0){
SL.glmnet (..., glmnet.alpha=alpha)}

SL.glmnet.alphab0 <- function(..., alpha=.50){
SL.glmnet (..., glmnet.alpha=alpha)}

SL.library <- c("SL.glm","SL.glmnet", "SL.glmnet.alpha50",
"SL.glmnet.alphaO","SL.randomForest")



TMLE Sample Code

##Specify a library of algorithms##

SL.library <- c("SL.glm","SL.step.interaction","SL.glmnet",
"SL.randomForest","SL.gam","SL.rpart" )



TMLE Sample Code

##TMLE approach: Super Learning##

tmleSL1 <- tmle(Y, A, W,

Q.SL.library = SL.library, g.SL.library = SL.library)
tmleSL1



TMLE Sample Code

> tmleSL1 <- tmle(Y, A, W, Q.SL.library = SL.library,
g.SL.1library = SL.1library)

Loading required package: gam

Loading required package: splines

Loading required package: foreach

foreach: simple, scalable parallel programming from
Revolution Analytics

Use Revolution R for scalability, fault tolerance and more.
http://www.revolutionanalytics.com

Loaded gam 1.14

Loading required package: glmnet
Loading required package: Matrix
Loaded glmnet 2.0-2

Loading required package: randomForest

randomForest 4.6-12

Type rfNews() to see new features/changes/bug fixes.
Loading required package: rpart



TMLE Sample Code

> tmleSL1
Additive Effect

Parameter Estimate:
Estimated Variance:
p-value:

95% Conf Interwval

True value is -3.38

-3.4074
0.11084
<Ze-16
1 (-4.0599, -2.7549)



TMLE Sample Code

##TMLE approach: GLM, MT misspecification of outcome##
#Misspecified outcome regression: Y T A + X1 + X2 + X3#

tmleGLM1 <- tmle(Y, A, W, Qform=Y"A+X1+X2+X3, gform=A"X1+X2+X3)
tmleGLM1



TMLE Sample Code

> tmleGLM1 <- tmle(Y, A, W, Qform=Y~A+X1+X2+X3,
gform=A~X1+X2+X3)
> tmleGLM1
Additive Effect

Parameter Estimate: -3.416

Estimated Variance: 0.1132

p-value: <Z2e-16
95% Conf Interval: (-4.0754, -2.7565)

True value is -3.38



TMLE Sample Code

##TMLE approach: GLM, OV misspecification of outcome##
#Misspecified outcome regression: Y ~ A + X1 + X2#

tmleGLM2 <- tmle(Y, A, W, Qform=Y"A+X1+X2, gform=A"X1+X2+X3)
tmleGLM2



TMLE Sample Code

> tmleGLMZ <- tmle(Y, A, W, Qform=Y~A+X1+X2,
gform=A~X1+X2+X3)
> tmleGLMZ
Additive Effect

Parameter Estimate: -3.3976

Estimated Variance: @.1416

p-value: <Ze-16
95% Conf Interval: (-4.1351, -2.6601)

True value is -3.38



TMLE Sample Code

##TMLE approach: GLM, OV misspecification of exposure##
#Misspecified exposure regression: A 7 X1 + X2#

tmleGLM3 <- tmle(Y, A, W, Qform=Y~A+X1+X2+X3+A:X3, gform=A"X1+X2)
tmleGLM3



TMLE Sample Code

> tmleGLM3 <- tmle(Y, A, W, Qform=Y~A+X1+XZ2+X3+A:X3,
gform=A~X1+X2)
> tmleGLM3
Additive Effect

Parameter Estimate: -3.4277

Estimated Variance: ©.10156

p-value: <Ze-16
95% Conf Interval: (-4.0524, -2.8@31)

True value is -3.38



TMLE Sample Code

50

40

30
B Machine Learning

Misspecified Parametric

20

%

Super Learner MT oV
Outcome Outcome

TMLE

Schuler and Rose (2017)

ov Super Learner MT
Exposure Outcome

G-Computation

Estimator

ov Super Learner ov
Outcome Exposure

IPW



TMLE Sample Code

Super leamer
Qutcome variables: A, Xi, Xz, X3
Misspecified parametric regression
Main-terms misspecification
Outcome variables: A, X;, X5, Xy
Omitted-variable misspecification
Outcome variables: A, X;, Xz

Super leamer
Exposure variables: X;, Xz, Xa
Misspecified parametric regression
Omitted-variable misspecification
Exposure variables: X, X;

Schuler and Rose (2017)

G-Computation

-3.27 (0.35)

-3.25 (0.33)

-4.98 (0.37)
Inverse Probability Weighting

-3.43 (0.37)

-4.96 (0.37)

0.11

0.13

-3.98, -2.56

=391, -2.59

-5.69, -4.24°

—4.17, -2.63

-5.67, -4.21°



TMLE Packages

» tmle (Gruber): Main point-treatment TMLE package
» ltmle (Schwab): Main longitudinal TMLE package
» SAS code (Brooks): Github

» Julia code (Lendle): Github

More: targetedlearningbook.com/software



Targeted Learning (targetedlearningbook.com)

Mark J. van der Laan
Sherri Rose

Targeted Learning

Targeted Learning in Data Science

Causal Inference for Complex Longitudinal Studies

Mark J. van der Laan
Sherri Rose

Springer
Berlin Heidelberg NewYork
HongKong London

van der Laan & Rose, Targeted Learning: Causal Inference for
Observational and Experimental Data. New York: Springer, 2011.




Q & A



